Analisis Karakteristik Akustik Dan Dinamik Micro-Perforated Panel Dengan Struktur Honeycomb Mengunakan FEM

  • Debby Perkasa PASCA T. MESIN UNAND
  • Afdhilla Afdhilla Teknik Mesin, Fakultas Teknik , Universitas Andalas Padang
  • Meifal Rusli Teknik Mesin, Fakultas Teknik , Universitas Andalas Padang
Keywords: Acoustic Characteristics, Dynamic Characteristics, Micro-Perforated Panel, Honeycomb, FEM


This study focuses on the discussion of the correlation of acoustic and dynamic characteristics of hybrid panels, namely Micro-perforated Panel (MPP) and Honeycomb (HC) structures. Acoustic characteristics in experimental studies are obtained by the sound absorption coefficient and Sound Transmission Loss. Meanwhile, the dynamic characteristics are obtained by the mode and frequency response analysis of numerical simulation methods. The results of these two characteristics serve as a benchmark for the development of experimental data studies/analysis. The purpose of this study is to obtain dynamic characteristics using mode and frequency response analysis through the finite element method. The development of this experimental study/analysis data is to overcome the drawbacks of experimental testing. The weakness obtained from experimental studies is that the stages are complicated and require a very large amount of money. The method in this study was carried out by numerical simulation using the finite element method using the Ansys 2019 R3 program. The results of this study obtained dynamic characteristics from the development of experimental study analysis methods using numerical simulations through the finite element method. Numerical simulation on the hybrid panel provides efficiency at the experimental testing stage. The results of the mode and frequency response analysis obtained by numerical simulation methods have similarities in the frequency range of high and low frequency values of sound absorption coefficient and soundtransmission loss.


P. N. Breysse and P. S. J. Lees, “Noise and decibels,” Johns Hopkins Univ., 2006.

International Labour Organization, “General information How does noise affect our hearing ? How do you know if the noise level in the factory is too high ?,” no. 3, pp. 1–6,2019.

D. & Sugiharto, “Kebisingan Dan Gangguan Psikologis Pekerja Weaving Loom Dan Inspection Pt. Primatexco

Indonesia,” JHE (Journal Heal. Educ., vol. 2, no. 2, pp.130–137, 2017.

D. Takahashi, “A new method for predicting the sound absorption of perforated absorber systems,” Appl. Acoust.,

vol. 51, no. 1, pp. 71–84, 1997, doi: 10.1016/S0003-682X(96)00070-9.

Carbajo, J. Ramis, L. Godinho, and P. Amado-Mendes, “Perforated panel absorbers with micro-perforated partitions,” Appl. Acoust., vol. 149, pp. 108–113, 2019, doi: 10.1016/j.apacoust.2019.01.023.

S. Xie, D. Wang, Z. Feng, and S. Yang, “Sound absorption performance of microperforated honeycomb metasurface panels with a combination of multiple orifice diameters,” Appl. Acoust., vol. 158, p. 107046, 2020, doi:10.1016/j.apacoust.2019.107046.

Y. Yang, B. R. Mace, and M. J. Kingan, “A wave and finite element based homogenised model for predicting

sound transmission through honeycomb panels,” J. Sound Vib., vol. 463, p. 114963, 2019, doi: 10.1016/j.jsv.2019.114963.

S. Upreti, V. K. Singh, S. K. Kamal, A. Jain, and A. Dixit, “Modelling and analysis of honeycomb sandwich

structure using finite element method,” Mater. Today Proc., no. xxxx, 2019, doi: 10.1016/j.matpr.2019.07.377.

N. N. Najib, Z. M. Ariff, A. A. Bakar, and C. S. Sipaut, “Correlation between the acoustic and dynamic mechanical properties of natural rubber foam : Effect of foaming temperature,” Mater. Des., vol. 32, no. 2, pp. 505–511, 2011, doi: 10.1016/j.matdes.2010.08.030.

S. Li, X. Li, Z. Wang, G. Wu, G. Lu, and L. Zhao, “Finite element analysis of sandwich panels with stepwise graded

aluminum honeycomb cores under blast loading,” Compos. Part A Appl. Sci. Manuf., vol. 80, pp. 1–12,

, doi: 10.1016/j.compositesa.2015.09.025.

D. Asprone, F. Auricchio, C. Menna, S. Morganti, A. Prota, and A. Reali, “Statistical finite element analysis of

the buckling behavior of honeycomb structures,” Compos. Struct., vol. 105, pp. 240–255, 2013, doi: 10.1016/j.compstruct.2013.05.014.

S. W. Rienstra and A. Hirschberg, “An Introduction to Acoustics,” Phys. Today, vol. 5, no. 11, p. 24, 1952, doi:


J. P. Mattei, “Acoustical Engineering.,” Proc. - Int. Conf. Noise Control Eng., pp. 59–63, 1981, doi: 10.1063/1.3060138.

F. A. Everest and K. C. Pohlmann, Master Handbook of Acoustics, vol. 7, no. 11. 2015.

W. Guo and H. Min, “A compound micro-perforated panel sound absorber with partitioned cavities of different

depths,” Energy Procedia, vol. 78, pp. 1617–1622, 2015, doi: 10.1016/j.egypro.2015.11.238.

F. Bucciarelli, G. P. Malfense Fierro, and M. Meo, “A multilayer microperforated panel prototype for broadband

sound absorption at low frequencies,” Appl. Acoust., vol.146, pp. 134–144, 2019, doi: 10.1016/j.apacoust.2018.11.014.

J. Carbajo, J. Ramis, L. Godinho, P. Amado-Mendes, and J. Alba, “A finite element model of perforated panel

absorbers including viscothermal effects,” Appl. Acoust.,vol. 90, pp. 1–8, 2015, doi:10.1016/j.apacoust.2014.10.013.

J. D Jung, S. Y. Hong, J. H. Song, and H. W. Kwon, “Acoustic insulation performance of a honeycomb panel

using a transfer matrix method,” Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ., vol. 232, no. 4, pp. 392–

, 2018, doi: 10.1177/1475090217703467.

O. Onen and M. Caliskan, “Design of a single layer micro-perforated sound absorber by finite element

analysis,” Appl. Acoust., vol. 71, no. 1, pp. 79–85, 2010, doi: 10.1016/j.apacoust.2009.07.012.

A. Arjunan et al., “Development of a 3D finite element acoustic model to predict the sound reduction index of

stud based double-leaf walls,” J. Sound Vib., vol. 333, no.23, pp. 6140–6155, 2014, doi: 10.1016/j.jsv.2014.06.032.

How to Cite
Perkasa, D., Afdhilla, A., & Rusli, M. (2022). Analisis Karakteristik Akustik Dan Dinamik Micro-Perforated Panel Dengan Struktur Honeycomb Mengunakan FEM. Jurnal Teknik Mesin, 15(2), 61- 71.