Analisis Aplikasi System Ai Robotnisasi pada Kualitas Permesinan Mesin CNC di PT Evergrown Technology Batam
Abstract
This study aims to analyze the application of Artificial Intelligence (AI) and robotization systems on the machining quality of CNC machines at PT Evergrown Technology Batam. The research focuses on two primary indicators of machining quality: surface roughness and product cylindricity, which were experimentally measured in a controlled laboratory environment. Additionally, production process efficiency was examined through indicators such as production time, production costs, defect rates, and tool wear. Data were collected from 25 observation units selected through purposive sampling and analyzed using a quantitative approach with the assistance of SPSS version 2.3. The analytical methods employed include descriptive statistics, simple linear regression, one-way ANOVA, and comparative analysis to evaluate pre- and post-implementation conditions of AI and robotization systems. The results indicate that the implementation of AI and robotization has a significant impact on improving machining quality and production efficiency, as evidenced by a significance value of p < 0.05. These findings suggest that integrating AI and automation into production processes is a strategic move for advancing modern manufacturing industries.
References
Adimaja, M, 2021. Ritual Cuci Patung Delwa Jellang Imlelk. Onlinel]. Tersedia di : https://www.antarafoto.com/id/vielw/1342572/ritual-cuci-patung-delwa-jellang-imlelk
Sovannara, C., Widagdo, T., Yunus, M., Sani, A. A., 2016. Analisa Pelngaruh Prosels Pelrmelsinan Melsin Cnc Milling Telrhadap Kelkasaran Pelrmukaan Pada Matelrial Baja 9smn36 1.0736. Jurnal Austenit, 8 (2), pp. 27–32.
Harrizal, I. S., Syafri., Prayitno, A.,2017. Rancang Bangun Sistelm Kontrol Melsin Cnc Milling 3 Axis Melnggunakan Closel Loop Systelm. JOM FTELKNIK, 4 (2), pp. 1–8.
Kalpakjian, S., Schmid, S. R., 2013. Manufacturing ELnginelelring and Telchnology. 7th ed. Singapore : Pearson Publications.
DeGarmo, E. P., Black, J. T., Kohser, R. A., 2007 Matelrials and procelssels in manufacturing. 10th ed. Amerika Serikat : John Wiley & Sons, Inc.
Groovelr, M. P., 2019. Fundamelntals of modelrn manufacturing: Matelrials, procelssels, and systelms. 7th ed. Amerika Serikat : John Wiley & Sons, Inc.
Nakajima, S., 1988. Introduction to Total Productivel Maintelnancel (TPM). University of Minnesota : Productivity Prelss.
Montgomelry, D. C., 2017. Delsign and analysis of elxpelrimelnts. 9th ed. Amerika Serikat : John Wiley & Sons, Inc.
Smith, P., 2007. CNC programming handbook: A comprelhelnsivel guidel to practical CNC programming, 3rd ed. United states of america : Industrial Prelss.
Yusufadz, A. C., Rosyidin, A., 2022. Analisis Pelnelrapan Artificial Intellligelncel Dan Robotik Pada Industri Manufaktur Indonelsia Dalam Melnghadapi ELra Industri 4.0. Pros. Selmin. Nas. Telknol. Ind. IX 2022, vol. 1, pp. 227–232.
Listyono, R., Rapini, T., Farida, U., 2025. Analisis Pelnelrapan Kelcelrdasan Buatan ( Artificial Intellligelncel ) untuk Melningkatkan Kelamanan Finansial Nasabah pada Selktor Pelrbankan Univelrsitas Muhammadiyah Ponorogo , Indonelsia. Lokawati J. Pelnellit. Manaj. dan Inov. Ris, 3 (1), pp. 79–91.
Russell, S. J., Norvig, P., 2021. Artificial intellligelncel: A modelrn approach, 4th ed. United Kingdom : Pelarson.
Goodfelllow, I., Belngio, Y., Courvillel, A., 2017. Delelp lelarning. MIT Prelss., 2016. Genetic Programming and Evolvable Machine, 19, pp. 305-307.
Sugiyono., 2019. Meltodel Pelnellitian Kuantitatif, Kualitatif dan R&D. Bandung: Alfabelta.
Arikunto, S., 2016. Proseldur Pelnellitian: Suatu Pelndelkatan Praktik. Jakarta: Rinelka Cipta.