Analisis Coefficient of Performance (COP) dengan Pemanfaatan Energi Panas Discharge Kompresor Sistem Heat Exchanger Double Tube pada AC 1 PK untuk Pemanas Air
Abstract
Hot water has become an important part of everyday life. Utilization of waste heat is increasingly relevant in the modern era, due to very significant technological advances. One of them is the refrigeration system which regulates temperature by transferring heat energy from inside to outside the room. Basically, this heat can be used to heat water by absorbing heat before it reaches the condenser. Reusing waste heat from the condenser can save the electricity needed to heat water, making it an efficient way to utilize wasted energy. This research aims to determine the effect of variations in HE (heat exchanger) pipe length on the performance of the Coefficient of Performance COP, and the required electrical power consumption using heat exchanger calculation analysis for the CoolPack application. This research uses an experimental method on a 1 PK split AC with variations without a heat exchanger and with a 3 pass, 5 pass double tube heat exchanger. The results of this research show that without a heat exchanger the average COP is 3.68 and the electric power is 0.063 kWh, with a 3 pass heat exchanger the average COP is 4.1 with an increase of 11.4% from the data without using a heat exchanger and an electric power of 0.054 kWh, with a 5 pass heat exchanger the average COP is 4.66 with an increase of 26.6% from the data without using a heat exchanger and an electric power of 0.052. kWh. This shows that the better the heat dissipation in the condenser, the greater the heat absorbed by the evaporator, making the COP higher and the compressor work lower. Therefore, the use of electrical power is lower and the performance of an Air Conditioning system is more efficient.
References
Aliansyah, R., Prasetyo, B. Y., Mitrakusuma, W. H., 2023. Rancang Bangun Pemanas Air dengan Memanfaatkan Discharge Line pada AC Split. Prosiding Industrial Research Workshop and National Seminar, 14 (1), pp. 208-212.
Hidayat, R., Wilis, G. R, 2017. Analisis Getaran pada Kompresor Mesin Pendingin dengan Variasi Putaran (RPM). Engineering: Jurnal Bidang Teknik, 15 (2), pp. 65–72.
Yuono, L. D., Budiyanto, E., Ansori, A., 2022. Analisa kerja alat uji prestasi mesin pendingin udara dengan kapasitas daya kompresor 1 PK. Turbo Jurnal Program Studi Teknik Mesin, 11 (1), pp. 143–152.
Muliadi, N., 2022. Pengolahan Data Baru Air Conditioner Engine. S.Tr. Semarang: Politeknik Ilmu Pelayaran Semarang.
Nugraha, Y. H., Prasetyo, B. Y., & Mitrakusuma, W. H., 2023. Investigasi Performa Integrasi Heat Recovery Dan Ac Split Dengan Variasi Aliran Air. Journal Prosiding Industrial Research Workshop and National Seminar, 14 (1). Pp. 218–222.
Dzaky, M. I., et al., 2024. Perancangan Heat Exchanger Sistem Pemanas Air Berbasis Sistem Refrigerasi R410a. Jurnal Foundry, 7 (1), pp. 34-41.
Cengel, Y. A., 2015. Thermodynamics : An Engineering Approach Introduction And Basic Concepts. 8th Ed. 2015.
Muhsin, Z., Djuanda., Rasyid, A. R., Munandar., 2017. Analisis Unjuk Kerja (COP) Mesin Pendingin Hibrid dengan Menggunakan Refrigeran R-22. Jurnal Teknik Mesin Teknologi, 17 (1), pp. 49–58.
Dermawan. A. P., et al., 2020. Analisa Tahapan Thermal Tangki Pada Kondensor AC Sebagai Water Heater. Jurnal Mesin Material Manufaktur dan Energi, 1 (1), pp. 36–41.
Rasta, I. M., 2009. Pemanfaatan Energi Panas Terbuang pada Kondensor AC Sentral Jenis Water Chiller untuk Pemanas Air Hemat Energi. Jurnal Ilmiah Teknik Mesin CakraM, 3 (2), pp. 114–120.
B. O. Bolaji, B. O., 2020. Theoretical assessment of new low global warming potential refrigerant mixtures as eco-friendly alternatives in domestic refrigeration systems. Scientific African, Elsevier, 10, pp. e00632.
HVAC-R & Solar Engineering Resource., Refrigerants Pressure Enthalpy Charts. [Online] Tersedia di: https://hvac-eng.com/refrigerants-p-h-diagram/