Analisis Sifat Mekanik dan Karakteristik Fisik Campuran Hidroksiapatit dari Tulang Sapi, Silika dengan Pengikat Resin sebagai Kandidat Implan Tulang
Abstract
Ceramic biomaterials based on hydroxyapatite (HA) and silica have been extensively studied due to their load-bearing capabilities in bone replacement and reconstruction applications. This study presents an analysis of the mechanical properties and physical characteristics of a mixture of bovine bone hydroxyapatite and silica with a resin binder as a candidate for bone implants. the objective of this research is to examine the effect of the quantity of hydroxyapatite grains and the composition of silica reinforcement particles on the mechanical and physical properties of the product. The methodology involves mixing bovine bone hydroxyapatite and silica in ratios of 90:10, 80:20, and 70:30. Subsequently, the specimens were molded and subjected to tensile tests to determine their tensile strength and elongation. Surface morphology analysis was conducted using a scanning electron microscope (SEM), while functional group and crystallographic analyses were performed using FTIR and XRD. the results indicate that the 70:30 composition provided the best outcomes, with a tensile strength of 13.07 MPa, compared to the 90:10 and 80:20 compositions, which had tensile strengths of 6.68 MPa and 12.96 MPa, respectively. The microstructure of the surface after tensile testing shows that the addition of silica can increase mechanical strength and reduce the porosity of the specimen surface.
References
O. Johnell and J. A. Kanis., 2006. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos. Int, 17(12), pp. 1726–1733.
T. Estiasih et al., 2014. The Effect of Unsaponifiable Fraction from Palm Fatty Acid Distillate on Lipid Profile of Hypercholesterolaemia Rats. J. Food Nutr. Res, 2(12), pp. 1029–1036.
S. S. RAGHAVENDRA., 2017. Biocerm. Bioceram. Endod. – a Rev, vol. 51, pp. 128–137.
A. Szcześ, L. Hołysz, and E. Chibowski., 2017. Synthesis of hydroxyapatite for biomedical applications, 249(4), pp. 321–330.
J. Triyono, B. Tantomo Christiawan, and A. Masykur., 2017. Karakterisasi dan Laju Biodegradasi Biokomposit Serbuk Tulang Sapi/Shellac/Tepung Tapioka sebagai Material Pengisi Tulang. Mek. Maj. Ilm. Mek., 19(1), pp. 22–28.
S. E. Cahyaningrum, N. Herdyastuty, D. Supangat, and B. Devina., 2017. Sintesis Hidroksiapatit Dari Cangkang Telur Menggunakan Metode Pengendapan Basah. Pros. Semin. Nas. Kim. UNY, pp. 367–370.
A. D. E. Indra, J. O. N. Affi, I. H. Mulyadi, and Y. Wiyanto., 2021. Physical and Mechanical Properties of Hydroxyapatite Ceramics With A Mixture of Micron And Nano-Sized Powders : Optimising the Sintering Temperatures, 65(3), pp. 224–234.
K. Dahlan and S. U. Dewi., 2013. Pengaruh sintering dan penambahan senyawa karbonat pada sintesis senyawa kalsium fosfat. J. Pros. Semirata FMIPA Univ. Lampung, 1(1), pp. 153–158.
M. Sadat-Shojai, M. T. Khorasani, E. Dinpanah-Khoshdargi, and A. Jamshidi., 2013. Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater., 9(8), pp. 7591–7621.
W. Stapleton and P. Tobin., 2009. Verification problems in reusing internal design components, Proc. - Des. Autom. Conf. pp. 209–211.
T. C. Wahyudi, I. Sukmana, and S. Savetlana., 2019. Potensi Pengembangan Material Implan Tulang Hidroksiapatit Berbasis Bahan Alam Lokal. InProsiding Kolok. Tek., 3(1), pp. 1–5.
Burmawi, N. Jamarun, S. Arief, and Gunawarman., 2018. Analisa Kekuatan Tekan Biokomposit Hidroksiapatit Tulang Sapi-Borosilikat dengan Variasi Komposisi dan Tekanan Cetakan. Semin. Nas. Mesin dan Ind. (SNMI XII), no.4, pp.26–28.
S. Kondi and S. R. Gowda., 2023. Principles of bone healing. Surg. (United Kingdom), 41 (10), pp.625–631.
C. Y. Ooi, M. Hamdi, and S. Ramesh., 2007. Properties of hydroxyapatite produced by annealing of bovine bone. Ceram. Int., 33 (7), pp.1171–1177.
J. K. Odusote, Y. Danyuo, A. D. Baruwa, and A. A. Azeez., 2019. Synthesis and characterization of hydroxyapatite from bovine bone for production of dental implants. J. Appl. Biomater. Funct. Mate., 17 (2).
R. Paskarino and J. Affi., 2015. Mechanical Properties and Microstructure of Artificial Bone Prototype Made of Bovine Bone Powder by Mixing Method. vol. 23, pp. 16–21.
E. Bartonickova et al., 2017. Porous HA/alumina composites intended for bone-tissue engineering. Mater. Tehnol, 51 (4), pp. 631–636.
S. Pramanik, A. K. Agarwal, K. N. Rai, and A. Garg., 2007. Development of high strength hydroxyapatite by solid-state-sintering process. Ceram. Int., 33(3), pp. 419–426.
Y. Yetri, A. Indra, and J. Affi., 2024. Extraction of hydroxyapatite from bovine bones : The manufacturing development and its behavior properties towards acrylic resin / hydroxyapatite / alumina composites. Mater. Chem. Phys., vol. 319, no. March, p. 129244.
Fatma, . Desnelli, F. Riyanti, M. Kamal, M. R. A. Mannan, and P. L. Hariani., 2021. Effect of Silica Addition on Mechanical Properties of Eggshell-Derived Hydroxyapatite. Aceh Int. J. Sci. Technol, 10 (2), pp. 129–138.